
Postgres.py Documentation
Release 1.0.0

Gittip, LLC

December 18, 2013

Contents

i

ii

Postgres.py Documentation, Release 1.0.0

postgres is a high-value abstraction over psycopg2.

Contents 1

http://initd.org/psycopg/

Postgres.py Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Installation

postgres is available on GitHub and on PyPI:

$ pip install postgres

We test against Python 2.6, 2.7, 3.2, and 3.3. We don’t yet have a testing matrix for different versions of psycopg2
or PostgreSQL.

Importing postgres under Python 2 will cause the registration of typecasters with psycopg2 to ensure that you
get unicode instead of bytestrings for text data, according to this advice.

postgres is in the public domain.

3

https://github.com/gittip/postgres
https://pypi.python.org/pypi/postgres
https://travis-ci.org/gittip/postgres.py
http://initd.org/psycopg/docs/usage.html#unicode-handling
http://creativecommons.org/publicdomain/zero/1.0/

Postgres.py Documentation, Release 1.0.0

4 Chapter 1. Installation

CHAPTER 2

Tutorial

Instantiate a Postgres object when your application starts:

>>> from postgres import Postgres
>>> db = Postgres("postgres://jrandom@localhost/testdb")

Use run to run SQL statements:

>>> db.run("CREATE TABLE foo (bar text)")
>>> db.run("INSERT INTO foo VALUES (’baz’)")
>>> db.run("INSERT INTO foo VALUES (’buz’)")

Use one to fetch exactly one result:

>>> db.one("SELECT * FROM foo WHERE bar=’baz’")
{’bar’: ’baz’}

Use rows to fetch all results:

>>> db.rows("SELECT * FROM foo ORDER BY bar")
[{’bar’: ’baz’}, {’bar’: ’buz’}]

2.1 Bind Parameters

In case you’re not familiar with bind parameters in DB-API 2.0, the basic idea is that you put %(foo)s in your SQL
strings, and then pass in a second argument, a dict, containing parameters that psycopg2 (as an implementation of
DB-API 2.0) will bind to the query in a way that is safe against SQL injection. (This is inspired by old-style Python
string formatting, but it is not the same.)

>>> db.one("SELECT * FROM foo WHERE bar=%(bar)s", {"bar": "baz"})
{’bar’: ’baz’}

Never build SQL strings out of user input!

Always pass user input as bind parameters!

5

http://www.python.org/dev/peps/pep-0249/
http://en.wikipedia.org/wiki/SQL_injection

Postgres.py Documentation, Release 1.0.0

2.2 Context Managers

Eighty percent of your database usage should be covered by the simple run, one, rows API introduced above. For
the other 20%, postgres provides context managers for working at increasingly lower levels of abstraction. The
lowest level of abstraction in postgres is a psycopg2 connection pool that we configure and manage for you.
Everything in postgres, both the simple API and the context managers, uses this connection pool.

Here’s how to work directly with a psycogpg2 cursor while still taking advantage of connection pooling:

>>> with db.get_cursor() as cursor:
... cursor.execute("SELECT * FROM foo ORDER BY bar")
... cursor.fetchall()
...
[{’bar’: ’baz’}, {’bar’: ’buz’}]

A cursor you get from get_cursor has autocommit turned on for its connection, so every call you make using
such a cursor will be isolated in a separate transaction. Need to include multiple calls in a single transaction? Use the
get_transaction context manager:

>>> with db.get_transaction() as txn:
... txn.execute("INSERT INTO foo VALUES (’blam’)")
... txn.execute("SELECT * FROM foo ORDER BY bar")
... txn.fetchall()
...
[{’bar’: ’baz’}, {’bar’: ’blam’}, {’bar’: ’buz’}]

Note that other calls won’t see the changes on your transaction until the end of your code block, when the context
manager commits the transaction for you:

>>> with db.get_transaction() as txn:
... txn.execute("INSERT INTO foo VALUES (’blam’)")
... db.rows("SELECT * FROM foo ORDER BY bar")
...
[{’bar’: ’baz’}, {’bar’: ’buz’}]
>>> db.rows("SELECT * FROM foo ORDER BY bar")
[{’bar’: ’baz’}, {’bar’: ’blam’}, {’bar’: ’buz’}]

The get_transaction manager gives you a cursor with autocommit turned off on its connection. If the block
under management raises an exception, the connection is rolled back. Otherwise it’s committed. Use this when you
want a series of statements to be part of one transaction, but you don’t need fine-grained control over the transaction.
For fine-grained control, use get_connection to get a connection straight from the connection pool:

>>> with db.get_connection() as connection:
... cursor = connection.cursor()
... cursor.execute("SELECT * FROM foo ORDER BY bar")
... cursor.fetchall()
...
[{’bar’: ’baz’}, {’bar’: ’buz’}]

A connection gotten in this way will have autocommit turned off, and it’ll never be implicitly committed otherwise.
It’ll actually be rolled back when you’re done with it, so it’s up to you to explicitly commit as needed. This is the
lowest-level abstraction that postgres provides, basically just a pre-configured connection pool from psycopg2.

6 Chapter 2. Tutorial

http://initd.org/psycopg/docs/pool.html
http://initd.org/psycopg/docs/cursor.html

CHAPTER 3

API

class postgres.Postgres(url, minconn=1, maxconn=10, cursor_factory=<class ‘psy-
copg2.extras.RealDictCursor’>, strict_one=None)

Interact with a PostgreSQL database.

Parameters

• url (unicode) – A postgres:// URL or a PostgreSQL connection string

• minconn (int) – The minimum size of the connection pool

• maxconn (int) – The maximum size of the connection pool

• cursor_factory – Defaults to RealDictCursor

• strict_one (bool) – The default strict parameter for one

This is the main object that postgres provides, and you should have one instance per process for each
PostgreSQL database your process wants to talk to using this library. When instantiated, this object creates
a thread-safe connection pool, which opens minconn connections immediately, and up to maxconn accord-
ing to demand. The fundamental value of a Postgres instance is that it runs everything through its connection
pool.

Check the psycopg2 docs for additional cursor_factories, such as NamedTupleCursor.

The names in our simple API, run, one, and rows, were chosen to be short and memorable, and to not conflict
with the DB-API 2.0 execute, fetchone, and fetchall methods, which have slightly different semantics
(under DB-API 2.0 you call execute on a cursor and then call one of the fetch* methods on the same cursor
to retrieve rows; with our simple API there is no second fetch step). The context managers on this class are
named starting with get_ to set them apart from the simple-case API. Note that when working inside a block
under one of the context managers, you’re using DB-API 2.0 (execute + fetch*), not our simple API (run
/ one / rows).

>>> import postgres
>>> db = postgres.Postgres("postgres://jrandom@localhost/test")

run(sql, parameters=None)
Execute a query and discard any results.

Parameters

• sql (unicode) – the SQL statement to execute

• parameters (dict or tuple) – the bind parameters for the SQL statement

7

http://www.postgresql.org/
http://www.postgresql.org/docs/current/static/libpq-connect.html
http://initd.org/psycopg/docs/pool.html#psycopg2.pool.ThreadedConnectionPool
http://initd.org/psycopg/docs/extras.html#connection-and-cursor-subclasses

Postgres.py Documentation, Release 1.0.0

Returns None

>>> db.run("CREATE TABLE foo (bar text)")
>>> db.run("INSERT INTO foo VALUES (’baz’)")
>>> db.run("INSERT INTO foo VALUES (’buz’)")

one(sql, parameters=None, strict=None)
Execute a query and return a single result.

Parameters

• sql (unicode) – the SQL statement to execute

• parameters (dict or tuple) – the bind parameters for the SQL statement

• strict (bool) – whether to raise when there isn’t exactly one result

Returns dict or None

Raises TooFew or TooMany

By default, strict ends up evaluating to True, in which case we raise TooFew or TooMany if the
number of rows returned isn’t exactly one. You can override this behavior per-call with the strict
argument here, or globally by passing strict_one to the Postgres constructor. If you use both, the
strict argument here wins.

>>> row = db.one("SELECT * FROM foo WHERE bar=’baz’"):
>>> print(row["bar"])
baz

rows(sql, parameters=None)
Execute a query and return all resulting rows.

Parameters

• sql (unicode) – the SQL statement to execute

• parameters (dict or tuple) – the bind parameters for the SQL statement

Returns list of dict

>>> for row in db.rows("SELECT bar FROM foo"):
... print(row["bar"])
...
baz
buz

get_cursor(*a, **kw)
Return a CursorContextManager that uses our connection pool.

This is what execute, fetchone, and fetchall use under the hood. You might use it if you want to
access cursor attributes, for example.

>>> with db.get_cursor() as cursor:
... cursor.execute("SELECT * FROM foo")
... cursor.rowcount
...
2

get_transaction(*a, **kw)
Return a TransactionContextManager that uses our connection pool.

8 Chapter 3. API

http://initd.org/psycopg/docs/cursor.html

Postgres.py Documentation, Release 1.0.0

Use this when you want a series of statements to be part of one transaction, but you don’t need fine-
grained control over the transaction. If your code block inside the with statement raises an exception, the
transaction will be rolled back. Otherwise, it’ll be committed.

>>> with db.get_transaction() as txn:
... txn.execute("SELECT * FROM foo")
... txn.fetchall()
...
[{’bar’: ’baz’}, {’bar’: ’buz’}]

get_connection()
Return a ConnectionContextManager that uses our connection pool.

Use this when you want to take advantage of connection pooling, but otherwise need full control, for
example, to do complex things with transactions.

>>> with db.get_connection() as connection:
... cursor = connection.cursor()
... cursor.execute("SELECT * FROM foo")
... cursor.fetchall()
...
[{’bar’: ’baz’}, {’bar’: ’buz’}]

class postgres.Connection(*a, **kw)
This is a subclass of psycopg2.extensions.connection.

Postgres uses this class as the connection_factory for its connection pool. Here are the differences
from the base class:

•We set autocommit to True.

•We set the client encoding to UTF-8.

•We use self.cursor_factory.

class postgres.CursorContextManager(pool, *a, **kw)
Instantiated once per get_cursor call.

The return value of CursorContextManager.__enter__ is a
psycopg2.extras.RealDictCursor. Any positional and keyword arguments to our constructor
are passed through to the cursor constructor. The Connection underlying the cursor is checked out of the
connection pool when the block starts, and checked back in when the block ends.

class postgres.TransactionContextManager(pool, *a, **kw)
Instantiated once per get_transaction call.

The return value of TransactionContextManager.__enter__ is a
psycopg2.extras.RealDictCursor. Any positional and keyword arguments to our constructor
are passed through to the cursor constructor. When the block starts, the Connection underlying the cursor is
checked out of the connection pool and autocommit is set to False. If the block raises an exception, the
Connection is rolled back. Otherwise it’s committed. In either case, autocommit is restored to True and
the Connection is put back in the pool.

class postgres.ConnectionContextManager(pool)
Instantiated once per get_connection call.

The return value of ConnectionContextManager.__enter__ is a postgres.Connection. When
the block starts, a Connection is checked out of the connection pool and autocommit is set to False.
When the block ends, autocommit is restored to True and the Connection is rolled back before being put
back in the pool.

9

Postgres.py Documentation, Release 1.0.0

10 Chapter 3. API

Python Module Index

p
postgres, ??

11

