

Postgres.py

This is a PostgreSQL client library for humans.

Installation

postgres is available on GitHub [https://github.com/chadwhitacre/postgres.py] and on PyPI [https://pypi.python.org/pypi/postgres]:

$ pip install postgres

postgres requires psycopg2 [http://initd.org/psycopg/] version 2.7.5 or higher.

We test [https://travis-ci.org/chadwhitacre/postgres.py] against Python 2.7, 3.5,
3.6, and 3.7. We don’t yet have a testing matrix for different versions of
psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2] or PostgreSQL.

postgres is released under the MIT license [https://github.com/chadwhitacre/postgres.py/blob/master/LICENSE].

See Also

The sql [https://pypi.python.org/pypi/sql] library provides a run / one / all API for any DB API 2.0 driver.

The Records [https://github.com/kennethreitz/records] library provides a similar top-level API, and integration with
SQLAlchemy and Tablib.

Tutorial

Instantiate a Postgres object when your application starts:

>>> from postgres import Postgres
>>> db = Postgres()

Use run to run SQL statements:

>>> db.run("CREATE TABLE foo (bar text, baz int)")
>>> db.run("INSERT INTO foo VALUES ('buz', 42)")
>>> db.run("INSERT INTO foo VALUES ('bit', 537)")

Use one to run SQL and fetch one result or
None:

>>> db.one("SELECT * FROM foo WHERE bar='buz'")
Record(bar='buz', baz=42)
>>> db.one("SELECT * FROM foo WHERE bar='blam'")

Use all to run SQL and fetch all results:

>>> db.all("SELECT * FROM foo ORDER BY bar")
[Record(bar='bit', baz=537), Record(bar='buz', baz=42)]

If your queries return one column then you get just the value or a list of
values instead of a record or list of records:

>>> db.one("SELECT baz FROM foo WHERE bar='buz'")
42
>>> db.all("SELECT baz FROM foo ORDER BY bar")
[537, 42]

Jump ahead for the ORM Tutorial.

Bind Parameters

In case you’re not familiar with bind parameters in DB-API 2.0 [http://www.python.org/dev/peps/pep-0249/], the basic
idea is that you put %(foo)s in your SQL strings, and then pass in a second
argument, a dict [https://docs.python.org/3/library/stdtypes.html#dict], containing parameters that psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2] (as
an implementation of DB-API 2.0) will bind to the query in a way that is safe
against SQL injection [http://en.wikipedia.org/wiki/SQL_injection]. (This is inspired by old-style Python string
formatting, but it is not the same.)

>>> db.one("SELECT * FROM foo WHERE bar=%(bar)s", {"bar": "buz"})
Record(bar='buz', baz=42)

As a convenience, passing parameters as keyword arguments is also supported:

>>> db.one("SELECT * FROM foo WHERE bar=%(bar)s", bar="buz")
Record(bar='buz', baz=42)

Never build SQL strings out of user input!

Always pass user input as bind parameters!

Context Managers

Eighty percent of your database usage should be covered by the simple
run, one,
all API introduced above. For the other 20%,
postgres provides two context managers for working at increasingly
lower levels of abstraction. The lowest level of abstraction in
postgres is a psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2] connection pool [http://initd.org/psycopg/docs/pool.html] that we configure and manage for
you. Everything in postgres, both the simple API and the context
managers, uses this connection pool.

Use the get_cursor context manager to work
directly with a simple cursor, while still taking advantage of connection
pooling and automatic transaction management:

>>> with db.get_cursor() as cursor:
... cursor.run("INSERT INTO foo VALUES ('blam')")
... cursor.all("SELECT * FROM foo ORDER BY bar")
...
[Record(bar='bit', baz=537), Record(bar='blam', baz=None), Record(bar='buz', baz=42)]

Note that other calls won’t see the changes on your transaction until the end
of your code block, when the context manager commits the transaction for you:

>>> db.run("DELETE FROM foo WHERE bar='blam'")
>>> with db.get_cursor() as cursor:
... cursor.run("INSERT INTO foo VALUES ('blam')")
... db.all("SELECT * FROM foo ORDER BY bar")
...
[Record(bar='bit', baz=537), Record(bar='buz', baz=42)]
>>> db.all("SELECT * FROM foo ORDER BY bar")
[Record(bar='bit', baz=537), Record(bar='blam', baz=None), Record(bar='buz', baz=42)]

The get_cursor method gives you a context manager
that wraps a simple cursor. It has autocommit turned off on its
connection. If the block under management raises an exception, the connection
is rolled back. Otherwise it’s committed. Use this when you want a series of
statements to be part of one transaction, but you don’t need fine-grained
control over the transaction. For fine-grained control, use
get_connection to get a connection straight from
the connection pool:

>>> db.run("DELETE FROM foo WHERE bar='blam'")
>>> with db.get_connection() as connection:
... cursor = connection.cursor()
... cursor.all("SELECT * FROM foo ORDER BY bar")
...
[Record(bar='bit', baz=537), Record(bar='buz', baz=42)]

A connection gotten in this way will have autocommit turned off, and
it’ll never be implicitly committed otherwise. It’ll actually be rolled back
when you’re done with it, so it’s up to you to explicitly commit as needed.
This is the lowest-level abstraction that postgres provides,
basically just a pre-configured connection pool from psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2] that
uses simple cursors.

The Postgres Object

	
exception postgres.NotASimpleCursor

	

	
exception postgres.NotAModel

	

	
exception postgres.NoTypeSpecified

	

	
exception postgres.NoSuchType

	

	
exception postgres.AlreadyRegistered

	

	
exception postgres.NotRegistered

	

	
class postgres.Postgres(url='', minconn=1, maxconn=10, idle_timeout=600, readonly=False, cursor_factory=<class 'postgres.cursors.SimpleNamedTupleCursor'>, back_as_registry={<class 'tuple'>: <function return_tuple_as_is>, 'tuple': <function return_tuple_as_is>, <class 'dict'>: <function make_dict>, 'dict': <function make_dict>, <function namedtuple>: <function make_namedtuple>, 'namedtuple': <function make_namedtuple>, <class 'postgres.cursors.Row'>: <class 'postgres.cursors.Row'>, 'Row': <class 'postgres.cursors.Row'>}, pool_class=<class 'psycopg2_pool.ThreadSafeConnectionPool'>)

	Interact with a PostgreSQL [http://www.postgresql.org/] database.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A postgres:// URL or a PostgreSQL connection string [http://www.postgresql.org/docs/current/static/libpq-connect.html]

	minconn (int [https://docs.python.org/3/library/functions.html#int]) – The minimum size of the connection pool

	maxconn (int [https://docs.python.org/3/library/functions.html#int]) – The maximum size of the connection pool

	idle_timeout (int [https://docs.python.org/3/library/functions.html#int]) – How many seconds to wait before closing an idle
connection.

	readonly (bool [https://docs.python.org/3/library/functions.html#bool]) – Setting this to True [https://docs.python.org/3/library/constants.html#True] makes all connections and
cursors readonly by default.

	cursor_factory (type [https://docs.python.org/3/library/functions.html#type]) – The type of cursor to use when none is specified.
Defaults to SimpleNamedTupleCursor.

	back_as_registry (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Defines the values that can be passed to
various methods as a back_as argument.

	pool_class (type [https://docs.python.org/3/library/functions.html#type]) – The type of pool to use. Defaults to
ThreadSafeConnectionPool [https://psycopg2-pool.readthedocs.io/en/latest/index.html#psycopg2_pool.ThreadSafeConnectionPool].

This is the main object that postgres provides, and you should
have one instance per process for each PostgreSQL database your process
wants to talk to using this library.

>>> import postgres
>>> db = postgres.Postgres()

(Note that importing postgres under Python 2 will cause the
registration of typecasters with psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2] to ensure that you get
unicode instead of bytestrings for text data, according to this advice [http://initd.org/psycopg/docs/usage.html#unicode-handling].)

The libpq environment variables [https://www.postgresql.org/docs/current/libpq-envars.html] are used to
determine the connection parameters which are not explicitly passed in the
url argument.

When instantiated, this object creates a connection pool by calling
pool_class with the minconn, maxconn and idle_timeout arguments.
Everything this object provides runs through this connection pool. See the
documentation of the ConnectionPool [https://psycopg2-pool.readthedocs.io/en/latest/index.html#psycopg2_pool.ConnectionPool] class for more
information.

cursor_factory sets the default cursor that connections managed
by this Postgres instance will use. See the
Simple Cursors documentation below for additional options. Whatever
default you set here, you can override that default on a per-call basis by
passing cursor_factory to get_cursor.

The names in our simple API, run,
one, and all,
were chosen to be short and memorable, and to not directly conflict with
the DB-API 2.0 execute, fetchone, and
fetchall methods, which have slightly different semantics (under
DB-API 2.0 you call execute on a cursor and then call one of the
fetch* methods on the same cursor to retrieve records; with our
simple API there is no second fetch step, and we also provide
automatic dereferencing). See issues 16 [https://github.com/chadwhitacre/postgres.py/issues/16] and 20 [https://github.com/chadwhitacre/postgres.py/issues/20] for more of the
rationale behind these names. The context managers on this class are named
starting with get_ to set them apart from the simple-case API.

	
run(sql, parameters=None, **kw)

	Execute a query and discard any results.

	Returns

	None

This is a convenience method, it passes all its arguments to
SimpleCursorBase.run like this:

with self.get_cursor() as cursor:
 cursor.run(sql, parameters, **kw)

	
one(sql, parameters=None, **kw)

	Execute a query and return a single result or a default value.

	Returns

	a single record or value, or default (if
default is not an Exception [https://docs.python.org/3/library/exceptions.html#Exception])

	Raises

	TooFew or TooMany,
or default (if default is an Exception [https://docs.python.org/3/library/exceptions.html#Exception])

This is a convenience method, it passes all its arguments to
SimpleCursorBase.one like this:

with self.get_cursor() as cursor:
 return cursor.one(sql, parameters, **kw)

	
all(sql, parameters=None, **kw)

	Execute a query and return all results.

	Returns

	list [https://docs.python.org/3/library/stdtypes.html#list] of records or list [https://docs.python.org/3/library/stdtypes.html#list] of single values

This is a convenience method, it passes all its arguments to
SimpleCursorBase.all like this:

with self.get_cursor() as cursor:
 return cursor.all(sql, parameters, **kw)

	
get_cursor(cursor=None, **kw)

	Return a CursorContextManager that uses our connection pool.

	Parameters

	
	cursor – use an existing cursor instead of creating a new one
(see the explanations and caveats below)

	kw – passed through to CursorContextManager or
CursorSubcontextManager

>>> with db.get_cursor() as cursor:
... cursor.all("SELECT * FROM foo")
...
[Record(bar='buz', baz=42), Record(bar='bit', baz=537)]

You can use our simple run,
one, all
API, and you can also use the traditional DB-API 2.0 methods:

>>> with db.get_cursor() as cursor:
... cursor.execute("SELECT * FROM foo")
... cursor.fetchall()
...
[Record(bar='buz', baz=42), Record(bar='bit', baz=537)]

By default the cursor will have autocommit turned off on its
connection. If your code block inside the with statement
raises an exception, the transaction will be rolled back. Otherwise,
it’ll be committed. The context manager closes the cursor when the
block ends and puts the connection back in the pool. The cursor is
destroyed after use.

Use this when you want a series of statements to be part of one
transaction, but you don’t need fine-grained control over the
transaction.

The cursor argument enables running queries in a subtransaction. The
major difference between a transaction and a subtransaction is that the
changes in the database are not committed (nor rolled back) at the
end of a subtransaction.

The cursor argument is typically used inside functions which have an
optional cursor argument themselves, like this:

>>> def do_something(cursor=None):
... with db.get_cursor(cursor=cursor) as c:
... foo = c.one("...")
... # ... do more stuff
... # Warning: At this point you cannot assume that the changes have
... # been committed, so don't do anything that could be problematic
... # or incoherent if the transaction ends up being rolled back.

When the cursor argument isn’t None [https://docs.python.org/3/library/constants.html#None], the back_as argument is
still supported, but the other arguments (autocommit, readonly, and
the arguments of the connection.cursor [http://initd.org/psycopg/docs/connection.html#connection.cursor] method) are
not supported.

	
get_connection(**kw)

	Return a ConnectionContextManager that uses
our connection pool.

	Parameters

	kw – passed through to ConnectionContextManager

>>> with db.get_connection() as connection:
... cursor = connection.cursor()
... cursor.all("SELECT * FROM foo")
...
[Record(bar='buz', baz=42), Record(bar='bit', baz=537)]

Use this when you want to take advantage of connection pooling and our
simple run,
one, all
API, but otherwise need full control, for example, to do complex things
with transactions.

Cursors from connections gotten this way also support the traditional
DB-API 2.0 methods:

>>> with db.get_connection() as connection:
... cursor = connection.cursor()
... cursor.execute("SELECT * FROM foo")
... cursor.fetchall()
...
[Record(bar='buz', baz=42), Record(bar='bit', baz=537)]

	
register_model(ModelSubclass, typname=None)

	Register an ORM model.

	Parameters

	
	ModelSubclass – the Model subclass to
register with this Postgres instance

	typname – a string indicating the Postgres type to register this
model for (typname, without an “e,” is the name of the relevant
column in the underlying pg_type table). If None,
we’ll look for ModelSubclass.typname.

	Raises

	NotAModel,
NoTypeSpecified,
NoSuchType,
AlreadyRegistered

Note

See the orm docs for instructions on
subclassing Model.

	
unregister_model(ModelSubclass)

	Unregister an ORM model.

	Parameters

	ModelSubclass – the Model subclass to
unregister

	Raises

	NotAModel,
NotRegistered

If ModelSubclass is registered for multiple types, it is
unregistered for all of them.

	
check_registration(ModelSubclass, include_subsubclasses=False)

	Check whether an ORM model is registered.

	Parameters

	
	ModelSubclass – the Model subclass to
check for

	include_subsubclasses (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to also check for subclasses
of ModelSubclass or just ModelSubclass
itself

	Returns

	the type names (typname) for which this model is registered

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	NotAModel, NotRegistered

	
postgres.make_Connection(postgres)

	Define and return a subclass of psycopg2.extensions.connection [http://initd.org/psycopg/docs/extensions.html#psycopg2.extensions.connection].

	Parameters

	postgres – the Postgres instance to bind to

	Returns

	a Connection class

The class defined and returned here will be linked to the instance of
Postgres that is passed in as postgres,
which will use this class as the connection_factory for its
connection pool.

The cursor method of this class accepts a back_as
keyword argument. By default the valid values for back_as are
tuple [https://docs.python.org/3/library/stdtypes.html#tuple], namedtuple, dict [https://docs.python.org/3/library/stdtypes.html#dict] and Row (or the
strings tuple, namedtuple, dict, Row), and None.
If back_as is not None, then it modifies the default row
type of the cursor.

We also set client encoding to UTF-8.

	
class postgres.ModelCaster(name, oid, attrs, array_oid=None, schema=None)

	A CompositeCaster [http://initd.org/psycopg/docs/extras.html#psycopg2.extras.CompositeCaster] subclass for Model.

The Context Managers

	
class postgres.context_managers.CursorContextManager(pool, autocommit=False, readonly=False, **cursor_kwargs)

	Instantiated once per get_cursor call.

	Parameters

	
	pool – see psycopg2_pool [https://psycopg2-pool.readthedocs.io/en/latest/index.html#module-psycopg2_pool]

	autocommit (bool [https://docs.python.org/3/library/functions.html#bool]) – see connection.autocommit [http://initd.org/psycopg/docs/connection.html#connection.autocommit]

	readonly (bool [https://docs.python.org/3/library/functions.html#bool]) – see connection.readonly [http://initd.org/psycopg/docs/connection.html#connection.readonly]

	cursor_kwargs – passed to connection.cursor [http://initd.org/psycopg/docs/connection.html#connection.cursor]

During construction, a connection is checked out of the connection pool
and its autocommit and readonly attributes are set, then a
cursor [http://initd.org/psycopg/docs/cursor.html#cursor] is created from that connection.

Upon exit of the with block, the connection is rolled back if an
exception was raised, or committed otherwise. There are two exceptions to
this:

	if autocommit is True [https://docs.python.org/3/library/constants.html#True], then the connection is neither
rolled back nor committed;

	if readonly is True [https://docs.python.org/3/library/constants.html#True], then the connection is always rolled
back, never committed.

In all cases the cursor is closed and the connection is put back in the pool.

	
class postgres.context_managers.ConnectionCursorContextManager(conn, autocommit=False, readonly=False, **cursor_kwargs)

	Creates a cursor from the given connection, then wraps it in a context
manager that automatically commits or rolls back the changes on exit.

	Parameters

	
	conn – a connection [http://initd.org/psycopg/docs/connection.html#connection]

	autocommit (bool [https://docs.python.org/3/library/functions.html#bool]) – see connection.autocommit [http://initd.org/psycopg/docs/connection.html#connection.autocommit]

	readonly (bool [https://docs.python.org/3/library/functions.html#bool]) – see connection.readonly [http://initd.org/psycopg/docs/connection.html#connection.readonly]

	cursor_kwargs – passed to connection.cursor [http://initd.org/psycopg/docs/connection.html#connection.cursor]

During construction, the connection’s autocommit and readonly
attributes are set, then connection.cursor [http://initd.org/psycopg/docs/connection.html#connection.cursor] is called with
cursor_kwargs.

Upon exit of the with block, the connection is rolled back if an
exception was raised, or committed otherwise. There are two exceptions to
this:

	if autocommit is True [https://docs.python.org/3/library/constants.html#True], then the connection is neither
rolled back nor committed;

	if readonly is True [https://docs.python.org/3/library/constants.html#True], then the connection is always rolled
back, never committed.

In all cases the cursor is closed.

	
class postgres.context_managers.CursorSubcontextManager(cursor, back_as=<object object>)

	Wraps a cursor so that it can be used for a subtransaction.

See get_cursor for an explanation of subtransactions.

	Parameters

	
	cursor – the cursor [http://initd.org/psycopg/docs/cursor.html#cursor] to wrap

	back_as – temporarily overwrites the cursor’s
back_as attribute

	
class postgres.context_managers.ConnectionContextManager(pool, autocommit=False, readonly=False)

	Instantiated once per get_connection call.

	Parameters

	
	pool – see psycopg2_pool [https://psycopg2-pool.readthedocs.io/en/latest/index.html#module-psycopg2_pool]

	autocommit (bool [https://docs.python.org/3/library/functions.html#bool]) – see connection.autocommit [http://initd.org/psycopg/docs/connection.html#connection.autocommit]

	readonly (bool [https://docs.python.org/3/library/functions.html#bool]) – see connection.readonly [http://initd.org/psycopg/docs/connection.html#connection.readonly]

This context manager checks out a connection out of the specified pool, sets
its autocommit and readonly attributes.

The __enter__ method returns the Connection.

The __exit__ method rolls back the connection and puts it back in
the pool.

Simple Cursors

The postgres library extends the cursors provided by
psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2] to add simpler API methods: run, one,
and all.

	
exception postgres.cursors.BadBackAs(bad_value, back_as_registry)

	

	
exception postgres.cursors.OutOfBounds(n, lo, hi)

	

	
exception postgres.cursors.TooFew(n, lo, hi)

	

	
exception postgres.cursors.TooMany(n, lo, hi)

	

	
class postgres.cursors.SimpleCursorBase

	This is a mixin to provide a simpler API atop the usual DB-API 2.0 API
provided by psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2]. Any custom cursor class you would like to
use as the cursor_factory argument to
Postgres must subclass this base.

>>> from psycopg2.extras import LoggingCursor
>>> from postgres.cursors import SimpleCursorBase
>>> class SimpleLoggingCursor(LoggingCursor, SimpleCursorBase):
... pass
...
>>> from postgres import Postgres
>>> db = Postgres(cursor_factory=SimpleLoggingCursor)

If you try to use a cursor that doesn’t subclass
SimpleCursorBase as the default
cursor_factory for a Postgres instance, we
won’t let you:

>>> db = Postgres(cursor_factory=LoggingCursor) # doctest: +NORMALIZE_WHITESPACE
...
Traceback (most recent call last):
 ...
postgres.NotASimpleCursor: We can only work with subclasses of SimpleCursorBase,
LoggingCursor doesn't fit the bill.

However, we do allow you to use whatever you want as the
cursor_factory argument for individual calls:

>>> with db.get_cursor(cursor_factory=LoggingCursor) as cursor:
... cursor.all("SELECT * FROM foo")
Traceback (most recent call last):
 ...
AttributeError: 'LoggingCursor' object has no attribute 'all'

	
back_as

	Determines which type of row is returned by the various methods. The valid
values are the keys of the back_as_registry.

	
execute(sql, **kw)

	This method is an alias of run.

	
run(sql, parameters=None, **kw)

	Execute a query, without returning any results.

	Parameters

	
	sql (str [https://docs.python.org/3/library/stdtypes.html#str]) – the SQL statement to execute

	parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the bind parameters for the SQL statement

	kw – alternative to passing a dict [https://docs.python.org/3/library/stdtypes.html#dict] as parameters

Example usage:

>>> db.run("DROP TABLE IF EXISTS foo CASCADE")
>>> db.run("CREATE TABLE foo (bar text, baz int)")
>>> bar, baz = 'buz', 42
>>> db.run("INSERT INTO foo VALUES (%s, %s)", (bar, baz))
>>> db.run("INSERT INTO foo VALUES (%(bar)s, %(baz)s)", dict(bar=bar, baz=baz))
>>> db.run("INSERT INTO foo VALUES (%(bar)s, %(baz)s)", bar=bar, baz=baz)

	
one(sql, parameters=None, default=None, back_as=None, **kw)

	Execute a query and return a single result or a default value.

	Parameters

	
	sql (str [https://docs.python.org/3/library/stdtypes.html#str]) – the SQL statement to execute

	parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the bind parameters for the SQL statement

	default – the value to return or raise if no results are found

	back_as (type [https://docs.python.org/3/library/functions.html#type] or string) – the type of record to return

	kw – alternative to passing a dict [https://docs.python.org/3/library/stdtypes.html#dict] as parameters

	Returns

	a single record or value, or default (if
default is not an Exception [https://docs.python.org/3/library/exceptions.html#Exception])

	Raises

	TooFew or TooMany,
or default (if default is an
Exception [https://docs.python.org/3/library/exceptions.html#Exception])

Use this for the common case where there should only be one record, but
it may not exist yet.

>>> db.one("SELECT * FROM foo WHERE bar='buz'")
Record(bar='buz', baz=42)

If the record doesn’t exist, we return None:

>>> record = db.one("SELECT * FROM foo WHERE bar='blam'")
>>> if record is None:
... print("No blam yet.")
...
No blam yet.

If you pass default we’ll return that instead of None:

>>> db.one("SELECT * FROM foo WHERE bar='blam'", default=False)
False

If you pass an Exception [https://docs.python.org/3/library/exceptions.html#Exception] instance or subclass for
default, we will raise that for you:

>>> db.one("SELECT * FROM foo WHERE bar='blam'", default=Exception)
Traceback (most recent call last):
 ...
Exception

We specifically stop short of supporting lambdas or other callables for
the default parameter. That gets complicated quickly, and
it’s easy to just check the return value in the caller and do your
extra logic there.

You can use back_as to override the type associated with the
default cursor_factory for your
Postgres instance:

>>> db.default_cursor_factory
<class 'postgres.cursors.SimpleNamedTupleCursor'>
>>> db.one("SELECT * FROM foo WHERE bar='buz'"
... , back_as=dict
...)
{'bar': 'buz', 'baz': 42}

That’s a convenience so you don’t have to go to the trouble of
remembering where SimpleDictCursor lives
and importing it in order to get dictionaries back.

If the query result has only one column, then we dereference that for
you.

>>> db.one("SELECT baz FROM foo WHERE bar='buz'")
42

And if the dereferenced value is None, we return the value
of default:

>>> db.one("SELECT sum(baz) FROM foo WHERE bar='nope'", default=0)
0

Dereferencing isn’t performed if a back_as argument is provided:

>>> db.one("SELECT null as foo", back_as=dict)
{'foo': None}

	
all(sql, parameters=None, back_as=None, **kw)

	Execute a query and return all results.

	Parameters

	
	sql (str [https://docs.python.org/3/library/stdtypes.html#str]) – the SQL statement to execute

	parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the bind parameters for the SQL statement

	back_as (type [https://docs.python.org/3/library/functions.html#type] or string) – the type of record to return

	kw – alternative to passing a dict [https://docs.python.org/3/library/stdtypes.html#dict] as parameters

	Returns

	list [https://docs.python.org/3/library/stdtypes.html#list] of records or list [https://docs.python.org/3/library/stdtypes.html#list] of single values

Use it like this:

>>> db.all("SELECT * FROM foo ORDER BY bar")
[Record(bar='bit', baz=537), Record(bar='buz', baz=42)]

You can use back_as to override the type associated with the
default cursor_factory for your
Postgres instance:

>>> db.default_cursor_factory
<class 'postgres.cursors.SimpleNamedTupleCursor'>
>>> db.all("SELECT * FROM foo ORDER BY bar", back_as=dict)
[{'bar': 'bit', 'baz': 537}, {'bar': 'buz', 'baz': 42}]

That’s a convenience so you don’t have to go to the trouble of
remembering where SimpleDictCursor lives
and importing it in order to get dictionaries back.

If the query results in records with a single column, we return a list
of the values in that column rather than a list of records of values.

>>> db.all("SELECT baz FROM foo ORDER BY bar")
[537, 42]

Unless a back_as argument is provided:

>>> db.all("SELECT baz FROM foo ORDER BY bar", back_as=dict)
[{'baz': 537}, {'baz': 42}]

	
class postgres.cursors.Row(cols, values)

	A versatile row type.

	
class postgres.cursors.SimpleTupleCursor

	A simple cursor that returns tuples.

This type of cursor is especially well suited if you need to fetch and process
a large number of rows at once, because tuples occupy less memory than dicts.

	
class postgres.cursors.SimpleNamedTupleCursor

	A simple cursor that returns namedtuples.

This type of cursor is especially well suited if you need to fetch and process
a large number of similarly-structured rows at once, and you also need the row
objects to be more evolved than simple tuples.

	
class postgres.cursors.SimpleDictCursor

	A simple cursor that returns dicts.

This type of cursor is especially well suited if you don’t care about the
order of the columns and don’t need to access them as attributes.

	
class postgres.cursors.SimpleRowCursor

	A simple cursor that returns Row objects.

This type of cursor is especially well suited if you want rows to be mutable.

The Row class implements both dict-style and attribute-style lookups and
assignments, in addition to index-based lookups. However, index-based
assigments aren’t allowed.

>>> from postgres import Postgres
>>> from postgres.cursors import SimpleRowCursor
>>> db = Postgres(cursor_factory=SimpleRowCursor)
>>> row = db.one("SELECT 1 as key, 'foo' as value")
>>> row[0] == row['key'] == row.key == 1
True
>>> key, value = row
>>> (key, value)
(1, 'foo')
>>> row.value = 'bar'
>>> row.timestamp = '2019-09-20 13:15:22.060537+00'
>>> row
Row(key=1, value='bar', timestamp='2019-09-20 13:15:22.060537+00')

Although Row objects support item lookups and assigments, they are not
instances of the dict [https://docs.python.org/3/library/stdtypes.html#dict] class and they don’t have its methods
(get [https://docs.python.org/3/library/stdtypes.html#dict.get], items [https://docs.python.org/3/library/stdtypes.html#dict.items], etc.).

	
postgres.cursors.isexception(obj)

	Given an object, return a boolean indicating whether it is an instance
or subclass of Exception [https://docs.python.org/3/library/exceptions.html#Exception].

An Object-Relational Mapper (ORM)

It’s somewhat of a fool’s errand to introduce a Python ORM in 2013, with
SQLAlchemy [http://www.sqlalchemy.org/] ascendant (Django’s ORM [http://www.djangobook.com/en/2.0/chapter05.html] not-withstanding). And yet here we
are. SQLAlchemy is mature and robust and full-featured. This makes it complex,
difficult to learn, and kind of scary. The ORM we introduce here is simpler: it
targets PostgreSQL only, it depends on raw SQL (it has no object model for
schema definition nor one for query construction), and it never updates your
database for you. You are in full, direct control of your application’s
database usage.

The fundamental technique we employ, introduced by Michael Robbelard at PyOhio
2013 [https://www.youtube.com/watch?v=Wz1_GYc4GmU#t=25m06s], is to write SQL queries that “typecast” results to table types, and then
use a CompositeCaster [http://initd.org/psycopg/docs/extras.html#psycopg2.extras.CompositeCaster] subclass to map
these to Python objects. This means we get to define our schema in SQL, and we
get to write our queries in SQL, and we get to explicitly indicate in our SQL
queries how Python should map the results to objects, and then we can write
Python objects that contain only business logic and not schema definitions.

Introducing Table Types

Every table in PostgreSQL has a type associated with it, which is the column
definition for that table. These are composite types just like any other
composite type in PostgreSQL, meaning we can use them to cast query results.
When we do, we get a single field that contains our query result, nested one
level:

test=# CREATE TABLE foo (bar text, baz int);
CREATE TABLE
test=# INSERT INTO foo VALUES ('blam', 42);
INSERT 0 1
test=# INSERT INTO foo VALUES ('whit', 537);
INSERT 0 1
test=# SELECT * FROM foo;
+------+-----+
| bar | baz |
+------+-----+
| blam | 42 |
| whit | 537 |
+------+-----+
(2 rows)

test=# SELECT foo FROM foo;
+------------+
| foo |
+------------+
| (blam,42) |
| (whit,537) |
+------------+
(2 rows)

test=#

The same thing works for views:

test=# CREATE VIEW bar AS SELECT bar FROM foo;
CREATE VIEW
test=# SELECT * FROM bar;
+------+
| bar |
+------+
| blam |
| whit |
+------+
(2 rows)

test=# SELECT bar FROM bar;
+--------+
| bar |
+--------+
| (blam) |
| (whit) |
+--------+
(2 rows)

test=#

psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2] provides a register_composite [http://initd.org/psycopg/docs/extras.html#psycopg2.extras.register_composite]
function that lets us map PostgreSQL composite types to Python objects. This
includes table and view types, and that is the basis for
postgres.orm. We map based on types, not tables.

ORM Tutorial

First, write a Python class that subclasses Model:

>>> from postgres.orm import Model
>>> class Foo(Model):
... typname = "foo"
...

Your model must have a typname attribute, which is the name of the
PostgreSQL type for which this class is an object mapping. (typname,
spelled without an “e,” is the name of the relevant column in the pg_type
table in your database.)

Second, register your model with your Postgres instance:

>>> db.register_model(Foo)

That will plug your model into the psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2] composite casting
machinery, and you’ll now get instances of your model back from
one and all when
you cast to the relevant type in your query. If your query returns more than
one column, you’ll need to dereference the column containing the model just as
with any other query:

>>> rec = db.one("""
... SELECT foo, bar.*
... FROM foo
... JOIN bar ON foo.bar = bar.bar
... ORDER BY foo.bar
... LIMIT 1
... """)
>>> rec.foo.bar
'blam'
>>> rec.bar
'blam'

And as usual, if your query only returns one column, then
one and all
will do the dereferencing for you:

>>> foo = db.one("SELECT foo FROM foo WHERE bar='blam'")
>>> foo.bar
'blam'
>>> [foo.bar for foo in db.all("SELECT foo FROM foo")]
['blam', 'whit']

To update your database, add a method to your model:

>>> db.unregister_model(Foo)
>>> class Foo(Model):
...
... typname = "foo"
...
... def update_baz(self, baz):
... self.db.run("UPDATE foo SET baz=%s WHERE bar=%s", (baz, self.bar))
... self.set_attributes(baz=baz)
...
>>> db.register_model(Foo)

Then use that method to update the database:

>>> db.one("SELECT baz FROM foo WHERE bar='blam'")
42
>>> foo = db.one("SELECT foo FROM foo WHERE bar='blam'")
>>> foo.update_baz(90210)
>>> foo.baz
90210
>>> db.one("SELECT baz FROM foo WHERE bar='blam'")
90210

We never update your database for you. We also never sync your objects for you:
note the use of the set_attributes method to
sync our instance after modifying the database.

The Model Base Class

	
exception postgres.orm.ReadOnlyAttribute

	

	
exception postgres.orm.UnknownAttributes

	

	
class postgres.orm.Model(values)

	This is the base class for models in postgres.orm.

Instances of subclasses of Model will have an
attribute for each field in the composite type for which the subclass is
registered (for table and view types, these will be the columns of the
table or view). These attributes are read-only. We don’t update your
database. You are expected to do that yourself in methods on your subclass.
To keep instance attributes in sync after a database update, use the
set_attributes helper.

	
set_attributes(**kw)

	Set instance attributes, according to kw.

	Raises

	UnknownAttributes

Call this when you update state in the database and you want to keep
instance attributes in sync. Note that the only attributes we can set
here are the ones that were given to us by the psycopg2 [http://initd.org/psycopg/docs/module.html#module-psycopg2]
composite caster machinery when we were first instantiated. These will
be the fields of the composite type for which we were registered, which
will be column names for table and view types.

Changelog

3.0.0 (Oct 19, 2019)

	the ReadOnly exception has been renamed to ReadOnlyAttribute, and the _read_only_attributes attribute of the Model class has been renamed to attnames (#91 [https://github.com/chadwhitacre/postgres.py/pull/91])

	the ORM has been optimized and now supports __slots__ [https://docs.python.org/3/reference/datamodel.html#slots] (#88 [https://github.com/chadwhitacre/postgres.py/pull/88])

	BREAKING: the check_registration method now always returns a list (#87 [https://github.com/chadwhitacre/postgres.py/pull/87])

	PostgreSQL versions older than 9.2 are no longer supported (#83 [https://github.com/chadwhitacre/postgres.py/pull/83])

	idle connections are now kept open for up to 10 minutes by default (#81 [https://github.com/chadwhitacre/postgres.py/pull/81])

	the methods run, one and all now support receiving query paramaters as keyword arguments (#79 [https://github.com/chadwhitacre/postgres.py/pull/79])

	BREAKING: the methods run, one and all no longer pass extra arguments to get_cursor (#79 [https://github.com/chadwhitacre/postgres.py/pull/79] and #67 [https://github.com/chadwhitacre/postgres.py/pull/67])

	subtransactions are now supported (#78 [https://github.com/chadwhitacre/postgres.py/pull/78] and #90 [https://github.com/chadwhitacre/postgres.py/pull/90])

	BREAKING: single-column rows aren’t unpacked anymore when the back_as argument is provided (#77 [https://github.com/chadwhitacre/postgres.py/pull/77])

	the cursor methods now also support the back_as argument (#77 [https://github.com/chadwhitacre/postgres.py/pull/77])

	a new row type and cursor subclass are now available, see SimpleRowCursor for details (#75 [https://github.com/chadwhitacre/postgres.py/pull/75])

	the ORM now supports non-default schemas (#74 [https://github.com/chadwhitacre/postgres.py/pull/74])

	connections now also have a get_cursor method (#73 [https://github.com/chadwhitacre/postgres.py/pull/73] and #82 [https://github.com/chadwhitacre/postgres.py/pull/82])

	the values accepted by the back_as argument can now be customized (#72 [https://github.com/chadwhitacre/postgres.py/pull/72])

	the one and all no longer fail when a row is made up of a single column named values (#71 [https://github.com/chadwhitacre/postgres.py/pull/71])

	any InterfaceError [http://initd.org/psycopg/docs/module.html#psycopg2.InterfaceError] exception raised during an automatic rollback is now suppressed (#70 [https://github.com/chadwhitacre/postgres.py/pull/70])

	the get_cursor method has two new optional arguments: autocommit and readonly (#69 [https://github.com/chadwhitacre/postgres.py/pull/69])

	Postgres objects now have a readonly attribute (#69 [https://github.com/chadwhitacre/postgres.py/pull/69])

	the url argument is no longer required when creating a Postgres object (#68 [https://github.com/chadwhitacre/postgres.py/pull/68])

2.2.2 (Sep 12, 2018)

	the only dependency was changed from psycopg2 >= 2.5.0 to psycopg2-binary >= 2.7.5 (#64 [https://github.com/chadwhitacre/postgres.py/pull/64])

	the license was changed from CC0 to MIT (#62 [https://github.com/chadwhitacre/postgres.py/pull/62])

2.2.1 (Oct 10, 2015)

	a bug in the URL-to-DSN conversion function was fixed (#53 [https://github.com/chadwhitacre/postgres.py/pull/53])

2.2.0 (Sep 12, 2015)

	the ORM was modified to detect some schema changes (#43 [https://github.com/chadwhitacre/postgres.py/pull/43])

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 postgres	

 	
 	
 postgres.context_managers	

 	
 	
 postgres.cursors	

 	
 	
 postgres.orm	

Index

 A
 | B
 | C
 | E
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	all() (postgres.cursors.SimpleCursorBase method)

 	(postgres.Postgres method)

 	
 	AlreadyRegistered

B

 	
 	back_as (postgres.cursors.SimpleCursorBase attribute)

 	
 	BadBackAs

C

 	
 	check_registration() (postgres.Postgres method)

 	ConnectionContextManager (class in postgres.context_managers)

 	
 	ConnectionCursorContextManager (class in postgres.context_managers)

 	CursorContextManager (class in postgres.context_managers)

 	CursorSubcontextManager (class in postgres.context_managers)

E

 	
 	execute() (postgres.cursors.SimpleCursorBase method)

G

 	
 	get_connection() (postgres.Postgres method)

 	
 	get_cursor() (postgres.Postgres method)

I

 	
 	isexception() (in module postgres.cursors)

M

 	
 	make_Connection() (in module postgres)

 	
 	Model (class in postgres.orm)

 	ModelCaster (class in postgres)

N

 	
 	NoSuchType

 	NotAModel

 	
 	NotASimpleCursor

 	NotRegistered

 	NoTypeSpecified

O

 	
 	one() (postgres.cursors.SimpleCursorBase method)

 	(postgres.Postgres method)

 	
 	OutOfBounds

P

 	
 	Postgres (class in postgres)

 	postgres (module)

 	
 	postgres.context_managers (module)

 	postgres.cursors (module)

 	postgres.orm (module)

R

 	
 	ReadOnlyAttribute

 	register_model() (postgres.Postgres method)

 	
 	Row (class in postgres.cursors)

 	run() (postgres.cursors.SimpleCursorBase method)

 	(postgres.Postgres method)

S

 	
 	set_attributes() (postgres.orm.Model method)

 	SimpleCursorBase (class in postgres.cursors)

 	SimpleDictCursor (class in postgres.cursors)

 	
 	SimpleNamedTupleCursor (class in postgres.cursors)

 	SimpleRowCursor (class in postgres.cursors)

 	SimpleTupleCursor (class in postgres.cursors)

T

 	
 	TooFew

 	
 	TooMany

U

 	
 	UnknownAttributes

 	
 	unregister_model() (postgres.Postgres method)

 nav.xhtml

 Table of Contents

 		
 Postgres.py

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

